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The Lottery Ticket Hypothesis
A randomly-initialized, dense neural network contains a subnetwork that is 
initialized such that—when trained in isolation—it can match the test accuracy of 
the original network after training for at most the same number of iterations. 
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Lottery Analogy
- If you want to win the lottery, just buy a lot of tickets and some will likely win
- Buying a lot of tickets = having an overparameterized neural network for your 

task
- Winning the lottery = training a network with high accuracy
- Winning ticket = pruned subnetwork which achieves high accuracy



Identifying Winning Tickets
One-shot pruning

1. Randomly initialize a neural network
2. Train the network
3. Prune p%** of weights with lowest magnitude from each layer (set them to 0)
4. Reset pruned network parameters to the original random initialization

Iterative pruning

- Iteratively repeat the one-shot pruning process
- Yields smaller networks than one-shot pruning

**Connections to outputs are pruned at 50% of the pruning rate



Results
- Tested with fully connected, convolutional, and ResNet on MNIST and 

CIFAR-10
- Pruned subnetworks are 10-20% smaller than the original and meet or 

exceed original test accuracy in at most the same number of iterations
- Works with different optimizers (SGD, momentum, Adam), dropout, weight 

decay, batchnorm, residual connections
- Sensitive to learning rate: requires a number of “warmup” iterations to find 

winning tickets at higher learning rates



Discussion
- Are winning initializations already close to fully-trained values?

- No! They actually change more during training than the other parameters
- Perhaps winning initializations might land in a region of the loss landscape that is particularly 

amenable to optimization

- They conjecture that SGD seeks out a trains a winning ticket in an 
overparameterized network

- Pruned subnetworks generalize better (smaller difference between train and 
test accuracies)



Limitations
- Iterative pruning is computationally intensive -> involves training a network 15 

times per trial
- Hard to study larger datasets like ImageNet
- Future work: find more efficient methods of finding winning tickets

- Their winning tickets are not optimized for modern libraries or hardware
- Future work: maybe non-magnitude based pruning methods could find smaller winning tickets 

earlier



Let’s Discuss


